In the previous article, we explored how to build multi-agent systems using Google’s Agent Development Kit (ADK) and the A2A (Agent-to-Agent) protocol. We built a currency conversion agent and exposed it via A2A, then created a travel assistant that consumed it—all within the ADK ecosystem.
But here’s where A2A truly shines: framework interoperability. The A2A protocol isn’t tied to any specific agent framework. Any A2A-compliant agent can communicate with any other, regardless of whether it was built with Google ADK, Microsoft Agent Framework, LangChain, or a custom implementation.
In today’s article, I’ll demonstrate this by building a Microsoft Agent Framework (MAF) agent that consumes the ADK currency agent we created earlier. This proves the real value of A2A—true framework-agnostic agent communication.
Complete code for this article is available at rchaganti/a2a-samples
Prerequisites
Before diving in, make sure you have:
- The ADK currency agent from the previous article is running on port 8001
- Microsoft Agent Framework installed:
1
|
pip install agent-framework --pre httpx a2a
|
When a MAF agent wants to communicate with an A2A server (our ADK agent), it needs to:
- Discover the agent by fetching its agent card from the well-known endpoint.
- Create a task by sending a message to the agent.
- Receive the response, which may include the agent’s reply or artifacts.
The A2A protocol handles all the complexity of message formatting, task management, and response handling through a standard HTTP/JSON interface.
The A2A Client Components in MAF
Microsoft Agent Framework provides first-class support for A2A through two key components:
1. A2ACardResolver
The A2ACardResolver class from the a2a.client package handles agent discovery:
1
2
3
4
5
6
7
8
9
10
|
from a2a.client import A2ACardResolver
import httpx
async with httpx.AsyncClient(timeout=60.0) as http_client:
resolver = A2ACardResolver(
httpx_client=http_client,
base_url="http://localhost:8001"
)
agent_card = await resolver.get_agent_card()
|
This fetches the Agent Card from http://localhost:8001/.well-known/agent.json, which contains:
- Agent name and description
- Supported capabilities and skills
- Authentication requirements
- Protocol version information
2. A2AAgent
The A2AAgent class wraps a remote A2A agent as a local MAF agent:
1
2
3
4
5
6
7
8
|
from agent_framework.a2a import A2AAgent
currency_agent = A2AAgent(
name="currency_converter",
description="Remote agent for currency conversions",
agent_card=agent_card,
url="http://localhost:8001",
)
|
Once wrapped, you can interact with the remote agent using the standard MAF interface:
1
2
3
|
response = await currency_agent.run("Convert 100 USD to EUR")
for message in response.messages:
print(message.text)
|
Let’s build a practical example: a shopping assistant that uses local tools for product management and delegates currency conversions to the remote ADK agent.
First, we define our local capabilities:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
PRODUCTS = {
"laptop": {"price": 1299.99, "category": "Electronics"},
"headphones": {"price": 199.99, "category": "Electronics"},
"keyboard": {"price": 89.99, "category": "Electronics"},
"backpack": {"price": 79.99, "category": "Accessories"},
}
def get_product_price(product_name: str) -> dict:
"""Get the price of a product in USD."""
product_lower = product_name.lower().strip()
if product_lower in PRODUCTS:
product = PRODUCTS[product_lower]
return {
"success": True,
"product": product_name.title(),
"price_usd": product["price"],
"category": product["category"],
"message": f"{product_name.title()}: ${product['price']:.2f} USD"
}
return {
"success": False,
"message": f"Product '{product_name}' not found."
}
def calculate_cart_total(items: list[dict]) -> dict:
"""Calculate the total price for a shopping cart."""
subtotal = 0.0
cart_items = []
for item in items:
product_name = item.get("product", "").lower().strip()
quantity = item.get("quantity", 1)
if product_name in PRODUCTS:
product = PRODUCTS[product_name]
item_total = product["price"] * quantity
subtotal += item_total
cart_items.append({
"product": product_name.title(),
"unit_price": product["price"],
"quantity": quantity,
"item_total": round(item_total, 2)
})
# Apply tax (8.5%)
tax = round(subtotal * 0.085, 2)
total = round(subtotal + tax, 2)
return {
"success": True,
"items": cart_items,
"subtotal_usd": round(subtotal, 2),
"tax_usd": tax,
"total_usd": total,
"message": f"Cart total: ${total:.2f} USD (including ${tax:.2f} tax)"
}
|
Connecting to the Remote ADK Agent
Now we connect to the ADK Currency Agent:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import asyncio
import httpx
from a2a.client import A2ACardResolver
from agent_framework.a2a import A2AAgent
ADK_CURRENCY_AGENT_URL = "http://localhost:8001"
async def create_currency_agent():
"""Create an A2A agent wrapper for the remote ADK currency agent."""
async with httpx.AsyncClient(timeout=60.0) as http_client:
resolver = A2ACardResolver(
httpx_client=http_client,
base_url=ADK_CURRENCY_AGENT_URL
)
agent_card = await resolver.get_agent_card()
print(f"✅ Connected to: {agent_card.name}")
print(f" Description: {agent_card.description}")
return A2AAgent(
name="currency_converter",
description="""Remote agent for currency conversions.
Use for: converting amounts, getting exchange rates,
listing supported currencies.""",
agent_card=agent_card,
url=ADK_CURRENCY_AGENT_URL,
)
|
We can now orchestrate between local tools and the remote A2A agent:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
async def shopping_with_currency_conversion():
"""Demonstrate local tools + remote A2A agent working together."""
async with httpx.AsyncClient(timeout=60.0) as http_client:
# Connect to the remote ADK agent
resolver = A2ACardResolver(
httpx_client=http_client,
base_url=ADK_CURRENCY_AGENT_URL
)
agent_card = await resolver.get_agent_card()
currency_agent = A2AAgent(
name="currency_converter",
description="Remote currency conversion agent",
agent_card=agent_card,
url=ADK_CURRENCY_AGENT_URL,
)
# Step 1: Use LOCAL tools to calculate cart
print("📦 Using LOCAL shopping tools...")
cart_result = calculate_cart_total([
{"product": "laptop", "quantity": 1},
{"product": "headphones", "quantity": 2}
])
print(f" {cart_result['message']}")
total_usd = cart_result["total_usd"]
# Step 2: Use REMOTE A2A agent for currency conversion
print("\n🌐 Using REMOTE A2A agent for currency conversion...")
response = await currency_agent.run(f"Convert {total_usd} USD to EUR")
for message in response.messages:
print(f" {message.text}")
|
Running this produces:
1
2
3
4
5
|
📦 Using LOCAL shopping tools...
Cart total: $1838.46 USD (including $143.50 tax)
🌐 Using REMOTE A2A agent for currency conversion...
1838.46 USD = 1691.38 EUR
|
Let’s trace through exactly what happens when MAF calls the ADK agent:
Agent Discovery
When A2ACardResolver.get_agent_card() is called, it sends:
1
2
|
GET /.well-known/agent.json HTTP/1.1
Host: localhost:8001
|
The ADK agent responds with its Agent Card:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
{
"name": "currency_agent",
"description": "A currency conversion agent that can convert amounts...",
"url": "http://localhost:8001",
"version": "1.0.0",
"capabilities": {
"streaming": false,
"pushNotifications": false
},
"defaultInputModes": ["text"],
"defaultOutputModes": ["text"],
"skills": [
{
"id": "convert_currency",
"name": "Currency Conversion",
"description": "Convert amounts between different currencies"
}
]
}
|
Task Creation
When currency_agent.run("Convert 100 USD to EUR") is called, MAF sends:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
POST /tasks/send HTTP/1.1
Host: localhost:8001
Content-Type: application/json
{
"jsonrpc": "2.0",
"method": "tasks/send",
"id": "unique-request-id",
"params": {
"id": "task-uuid",
"message": {
"role": "user",
"parts": [
{
"type": "text",
"text": "Convert 100 USD to EUR"
}
]
}
}
}
|
Response Handling
The ADK agent processes the request, calls its tools, and returns:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"result": {
"id": "task-uuid",
"status": {
"state": "completed"
},
"messages": [
{
"role": "agent",
"parts": [
{
"type": "text",
"text": "100 USD = 92 EUR"
}
]
}
]
}
}
|
MAF’s A2AAgent handles all this serialization and deserialization, presenting a clean interface.
The A2A protocol represents a significant step toward a future in which AI agents can collaborate regardless of their underlying frameworks. By standardizing the communication layer, we can build best-of-breed systems that leverage specialized agents from different ecosystems. A2A enables true interoperability, allowing agents developed in different frameworks to communicate seamlessly. The well-known endpoint (/.well-known/agent.json) provides all the information needed for agent discovery.
In future articles, we’ll explore:
- Exposing MAF agents via A2A for ADK or other frameworks to consume.
- Multi-agent orchestration with agents from different frameworks.
- Authentication and security in A2A communications.
- Streaming responses for long-running agent tasks.
Comments
Comments Require Consent
The comment system (Giscus) uses GitHub and may set authentication cookies. Enable comments to join the discussion.