

WMI Query Language
via PowerShell
Ravikanth Chaganti

Explore basics of WMI Query Language, different types of WMI queries, and learn how

PowerShell can be used to retrieve WMI management information using WQL.

[1]

Table of Contents
Introduction .. 5

Introducing WMI Query Language .. 5

WMI Query Types ... 6

Data Queries ... 6

Event Queries .. 6

Schema Queries .. 7

WQL Keywords .. 7

WQL Operators ... 8

Tools for the job .. 10

WBEMTEST .. 10

WMI Administrative Tools .. 12

[WMISEARCHER] type accelerator .. 14

PowerShell WMI cmdlets .. 15

WMI Data Queries .. 17

SELECT, FROM, and WHERE .. 17

Using Operators .. 18

ASSOCIATORS OF .. 21

ClassDefsOnly .. 23

AssocClass ... 24

ResultClass .. 24

ResultRole ... 24

Role ... 28

RequiredQualifier and RequiredAssocQualifier .. 28

REFERENCES OF ... 29

WMI Event Queries: Introduction ... 31

Event Query Types .. 33

Intrinsic Events .. 33

Extrinsic Events ... 33

Timer Events ... 33

WQL Syntax for event queries .. 34

WITHIN .. 34

[2]

GROUP ... 35

HAVING ... 36

BY .. 36

Intrinsic Event Queries .. 38

__InstanceCreationEvent .. 39

__InstanceDeletionEvent .. 39

__InstanceModificationEvent ... 39

Extrinsic Event Queries ... 43

Monitoring registry value change events ... 43

Monitoring registry key change events .. 44

Monitoring registry tree change events ... 45

Timer Events ... 46

WMI Schema Queries ... 49

Using __this ... 50

Using __Class .. 50

WMI Event Consumers ... 51

Temporary Event consumers .. 51

Permanent Event consumers .. 51

Creating an event filter ... 53

Creating a logical consumer .. 53

Binding Event Filter and Consumer ... 54

Introducing PowerEvents .. 54

Creating an event filter ... 55

Creating an event consumer ... 55

Binding Event filter and consumer .. 55

[3]

This book is dedicated to Andrew Tearle, the most

passionate PowerSheller and a good friend.

Rest in peace Andy.

[4]

Acknowledgements
I would like to thank Shay Levy (MVP), Aleksandar Nikolic (MVP), Philip LaVoie, and Robert
Robelo for providing their feedback. Their feedback really helped shape the ebook and include
extra content that was not planned initially. Also, thanks to everyone who read my blog posts
on WMI query language and provided feedback. Your encouragement and support helped me
write quite a bit about WQL and now this ebook.

[5]

Introduction

Windows Management Instrumentation (WMI) is Microsoft’s implementation of Web Based
Enterprise Management (WBEM), which is an industry initiative to develop a standard
technology for accessing management information in an enterprise environment. WMI uses the
Common Information Model (CIM) industry standard to represent systems, applications,
networks, devices, and other managed components. CIM is developed and maintained by the
Distributed Management Task Force (DMTF). We can write WMI scripts to automate several
tasks on local or remote computer(s).

Windows PowerShell has a few cmdlets to retrieve the management data exposed by WMI. We
can list these cmdlets by using:

#Use Get-Command and mention WMI* as the Noun
Get-Command -Noun WMI*

There are five cmdlets that are used to work with WMI. However, within the scope of this book,
we shall use Get-WMIObject and Register-WMIEvent only. Get-WMIObject, in its basic usage,
gets the instance(s) of a WMI class. So, for example, if we need to list out all drives of type 3
(disk drives) in a system,

Get-WMIObject -Class Win32_LogicalDisk | Where-Object {
 $_.DriveType -eq 3
}

In the above method, we retrieve all instances of Win32_LogicalDisk and then pass it to Where-
Object to filter out what we need. This can take a while depending on how many instances are
there. You can use an alternative approach by specifying -Query parameter instead of -Class.

#This example uses -Query parameter and specifies the query using WQL
Get-WMIObject -Query "SELECT * FROM Win32_LogicalDisk WHERE DriveType=3"

Introducing WMI Query Language
The above example uses WMI Query Language to get the same information as the earlier
example but a bit faster. We can verify this using Measure-Command cmdlet.

Let us see this in action:

[6]

In the above example, we used three variations of Get-WMIObject to do the same job of
retrieving all instances of Win32_LogicalDisk where the DriveType is 3 (a disk drive). From the
output, we can see that using -Query and -Filter are the fastest ways to retrieve the WMI
information.

Note
-Filter, as we shall see in next chapters, is a variation of -Query. In fact, the value of -
Filter represents the value of a WHERE clause when using -Query parameter. When
using -Filter, Get-WMIObejct cmdlet internally builds the WMI query as required.

The above example is very basic and may not really explain the usefulness of WQL — the speed
of execution is just one benefit. There are quite a few advanced querying techniques that can
be used to retrieve WMI information in an efficient manner. And, sometimes, such as working
with WMI events, WQL becomes a necessity. We shall see each of these benefits as we proceed
further.

So, what is WQL?
The WMI Query Language is a subset of the American National Standards Institute Structured
Query Language (ANSI SQL)—with minor semantic changes. Similar to SQL, WQL has a set of
keywords & operators and supports three types of queries.

WMI Query Types
WMI supports three types of queries:

1. Data Queries

2. Event Queries

3. Schema Queries

Data Queries
This type is the simplest form of querying for WMI data and the most commonly used query
type when working with WMI. Data queries are used to retrieve class instances and data
associations. The earlier example, where we queried for all instances of Win32_LogicalDisk
where the driveType is 4, is a data query. The WQL keywords such as SELECT, ASSOCIATORS OF,
REFERENCES OF, and ISA are used in data queries.

Event Queries
The event queries are used to create WMI event subscriptions. For example, using these
queries we can create an event subscription to notify whenever a USB drive gets attached to
the system. The WQL keywords such as GROUP, HAVING, and WITHIN are used when creating
event queries. The event queries are critical when we want use PowerShell cmdlets such as
Register-WMIEvent for creating temporary event consumers. Using this cmdlet, we can create
WMI event consumers and invoke an action when the event gets triggered. We shall see more
on this in the subsequent sections.

[7]

Schema Queries
Schema queries are used to retrieve class definitions (rather than class instances) and schema
associations. In layman’s terms, these queries are used to get information about WMI and its
structure. Schema queries return a result set of class definition objects rather than actual
instances of classes. The WQL keywords such as SELECT, ASSOCIATORS OF, REFERENCES OF, and
ISA are used in schema queries and of course, in a slightly different way than how data queries
use these keywords.

WMI does not support cross-namespace queries or associations. Using WQL, we cannot query
for all instances of a specified class residing in all of the namespaces on the target computer.
Also, WQL queries are read-only. There are no keywords such as INSERT or UPDATE. We cannot
modify the WMI objects using WQL.

WQL Keywords
Similar to SQL, WQL queries use keywords to retrieve data from the management objects. WQL
has 19 keywords to perform these queries against WMI repositories. Even though there are 19
WQL keywords, only a few of them can be used in all three possible query types we discussed
earlier. The following table lists all the WQL keywords and lists the query type in which they can
be used.

Keyword Query Type Description

 Data Schema Event
AND X X Combines two Boolean expressions, and returns

TRUE when both expressions are TRUE.

ASSOCIATORS OF X X Retrieves all instances that are associated with a
source instance. Use this statement with schema
queries and data queries.

__CLASS X X References the class of the object in a query.
FROM X X X Specifies the class that contains the properties

listed in a SELECT statement. Windows
Management Instrumentation (WMI) supports
data queries from only one class at a time.

GROUP X Causes WMI to generate one notification to
represent a group of events.

HAVING X Filters the events that are received during the
grouping interval that is specified in the WITHIN
clause.

IS X X Comparison operator used with NOT and NULL.
The syntax for this statement is the following:
IS [NOT] NULL (where NOT is optional)

ISA X X X Operator that applies a query to the subclasses of
a specified class

[8]

KEYSONLY X Used in REFERENCES OF and ASSOCIATORS OF
queries to ensure that the resulting instances are
only populated with the keys of the instances. This
reduces the overhead of the call.

LIKE X Operator that determines whether or not a given
character string matches a specified pattern.

NOT X Comparison operator that use in a WQL SELECT
query

NULL X Indicates an object does not have an explicitly
assigned value. NULL is not equivalent to zero (0)
or blank.

OR X Combines two conditions. When more than one
logical operator is used in a statement, the OR
operators are evaluated after the AND operators.

REFERENCES OF X X Retrieves all association instances that refer to a
specific source instance. The REFERENCES OF
statement is similar to the ASSOCIATORS OF
statement. However, it does not retrieve endpoint
instances; it retrieves the association instances.

SELECT X X X Specifies the properties that are used in a query.

TRUE X X Boolean operator that evaluates to -1 (minus one).
WHERE X X X Narrows the scope of a data, event, or schema

query.
WITHIN X Specifies polling or grouping interval.
FALSE X X X Boolean operator that evaluates to 0 (zero).

We shall look at each of these keywords when we start discussing different types of WMI
queries in-depth.

WQL Operators
Similar to arithmetic operators, WQL uses the same set. The following table lists all the
operators supported in WQL.

Operator Description

= Equal to
< Less than
> Greater than
<= Less than or equal

to
>= Greater than or

equal to

!= or <> Not equal to

[9]

A few WQL keywords such as IS, ISA, NOT, and LIKE1 can also be considered as operators. In
these keywords, IS and IS NOT operators are valid in the WHERE clause only if the constant is
NULL.

Once again, there is a detailed discussion on how to use these operators in the upcoming
sections.

1
 LIKE operator is not available in Windows 2000

[10]

Tools for the job

In the first chapter, we looked at what is WQL, different types of WMI queries, and WQL
keywords & operators. Before we dig deep into this subject, we shall look at different tools
available to execute WMI queries.

There are several tools that can be used to execute WMI queries. This includes

 WBEMTest.exe

 WMI tools

 [WMISEARCHER] type accelerator in PowerShell

 PowerShell WMI cmdlets

In the subsequent sections, we shall look at each of the above mentioned tools in detail and see
how WMI queries can be executed using these tools. However, rest of the chapters in this book
will focus only on WMI PowerShell cmdlets and refer to other tools only when required.

WBEMTEST
WBEMTest.exe is present on every computer that has WMI installed. This tool provides a great
way to explore WMI classes and instances. This was initially developed to test WMI COM API
and hence can do everything you can achieve using WMI.

To open WBEMTest.exe,
Click Start-> Run, type “WBEMTest.exe” and Press Enter. This should open a GUI window similar
to what is shown below:

[11]

Now, we can connect to a WMI namespace using the “Connect” button at the top.

Assuming you have the necessary permissions to access root\cimv2 namespace, just click
“Connect”. Once we are connected to the root\cimv2 namespace, we can perform several
actions such as enumerating classes, creating instances, executing methods, and also executing
WMI queries. The last part is what we are interested in.

[12]

In the above window, we can use the “Query” and “Notification Query” options to execute
WMI queries. The “Query” option can be used for WMI data and schema queries. And,
“Notification Query” can be used for running WMI event queries.

As an example, we shall now look at how we can execute simple data queries and save the
notification queries part for a later part of this book.

Click on the “Query” button in the WBEMTest window; enter a WQL statement as shown above
and click “Apply”.

The query result window shows all instances of Win32_Process class. This is it. WBEMTest is an
expert tool and is a great tool to explore WMI interfaces.

WMI Administrative Tools
WMI administrative tools can be used to view and edit WMI classes, properties, qualifiers and
instances in a WMI repository. You can also use these tools to invoke WMI methods, manage
WMI objects, register and receive WMI events. The free WMI tools download package includes

1. WMI CIM Studio

2. WMI Object browser

3. WMI Event registration

[13]

4. WMI Event viewer

These tools can be downloaded from
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6430f853-1120-48db-8cc5-
f2abdc3ed314

Note
WMI CIM Studio can be used to execute data/schema queries. WMI Tools do not
support executing WMI event queries.

Once the WMI tools are installed, open WMI CIM studio by selecting Start -> All Programs ->
WMI Tools -> WMI CIM Studio. This prompts for the WMI namespace selection and credentials.

In the resulting browser window, click on icon at the top-right corner. This brings up
another window as shown here:

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6430f853-1120-48db-8cc5-f2abdc3ed314
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6430f853-1120-48db-8cc5-f2abdc3ed314

[14]

Type ‘Select * from Win32_Process’ (without quotes) in the query textbox and click “Execute”.
This shows all the instances of Win32_Process class. Similarly, we can execute schema queries
using CIM Studio. The WMI tools are used for many other purposes than just executing WMI
queries. These tools are also a great way to explore and learn about WMI.

[WMISEARCHER] type accelerator
Windows PowerShell provides shortcuts to allow direct access to .NET namespaces. These
shortcuts are called type accelerators. There are three type accelerators to access WMI
management namespaces.

WMI type accelerator Description

[WMI] Retrieve single instance of a WMI class.
[WMICLASS] Access static properties and methods of a

WMI class.
[WMISEARCHER] Search for WMI objects

Within the scope of this book, we are more interested in how [WMISEARCHER] type accelerator
can be used to run WMI queries.

[WMISEARCHER] is a shortcut for System.Management.ManagementObjectSearcher2 .NET
namespace. The way we use this type accelerator is:

1. Provide a WQL statement.

2. Invoke the Get() method to execute the WMI query.

2
 ManagementObjectSearcher Class - http://msdn.microsoft.com/en-us/library/z0zx1aya.aspx

http://msdn.microsoft.com/en-us/library/z0zx1aya.aspx

[15]

Simple! And, this is how we use it at the PowerShell console.

Note
To see a list of all members of [WMISEARCHER] accelerators you can pipe
[WMISEARCHER]"" to Get-Member cmdlet.

$svcs = [WMISEARCHER]"SELECT * FROM Win32_Service WHERE State='Running'"
$svcs.Get()

In the above code snippet, we are using the [WMISEARCHER] shortcut to get a list of all services
in “running” state. By default, the scope of the query is set to root\cimv2 namespace. In case
you want to change the scope to a different namespace, you can do so by setting the “scope”
property of this object. For example,

$objSearch = [WMISEARCHER]"SELECT * FROM MSPower_DeviceEnable"
$objSearch.Scope = "root\WMI"
$objSearch.Get()

In this above example, we change the scope to root\WMI namespace to retrieve all the
instances of MSPower_DeviceEnable class. Using this type accelerator, we can set some
extended properties3 such as blocksize, timeout, etc. These options are not available in the
built-in WMI cmdlets method.

We can use [WMISEARCHER] for some quick access to WMI information but it gets quite
verbose soon. This brings us to the last section of this chapter – using PowerShell WMI cmdlets
to execute WMI queries.

PowerShell WMI cmdlets
As mentioned in the first chapter, PowerShell v2.0 includes five WMI cmdlets. Within these five
cmdlets, Get-WMIObject and Register-WMIEvent can be used to execute WMI queries. Get-
WMIObject can be used for data/schema queries while Register-WMIEvent can be used for
triggering event queries.

We have seen several examples using Get-WMIObject already. So, here is a quick example of an
event query using Register-WMIEvent.

Register-WMIEvent -Query "SELECT * FROM __InstanceCreationEvent WITHIN 10
WHERE TargetInstance ISA 'Win32_Process'" -Action {Write-Host "New process
created"}

The above query will display a message, “New Process Created”, every time a new process gets
created on the system. Don’t worry much even if you don’t understand anything here. WMI
event queries require a complete discussion and we shall see that in the later chapters.

3
 [WMISEARCHER] Query options: http://msdn.microsoft.com/en-

us/library/system.management.enumerationoptions.aspx

http://msdn.microsoft.com/en-us/library/system.management.enumerationoptions.aspx
http://msdn.microsoft.com/en-us/library/system.management.enumerationoptions.aspx

[16]

There are several other tools to execute WMI queries or access WMI information in general.
This list includes Sapien WMI Browser4, MoW’s WMI Explorer PowerShell script, etc. Go,
explore!

4
 Sapien’s WMI browser - http://www.sapien.com/

http://thepowershellguy.com/blogs/posh/archive/2008/05/13/powershell-wmi-exporer-wpf-edition.aspx
http://www.sapien.com/

[17]

WMI Data Queries

WMI data queries are the simplest form of querying for WMI data. WMI data queries are used
to retrieve class instances and associations. There are several keywords and operators that are
used in WMI data queries. This includes keywords such as SELECT, FROM, WHERE,
ASSOCIATORS OF, REFERENCES OF, NOT, LIKE, IS, NULL, and all other operators we saw in
chapter one.

In this chapter, we shall start looking at the most commonly used form of data queries and then
move on to data queries for association. As a part of the examples, we shall look at how some
of the operators are used, gotchas when using operators, and finally how to use multiple
operators in a query.

SELECT, FROM, and WHERE
The general syntax when using SELECT keyword for data queries is:

SELECT [* | Property Names] FROM ClassName

So, if you want to get all instances of Win32_Service class and all properties,

$query = "SELECT * FROM Win32_Service"
Get-WMIObject -Query $query

This will list all instances of Win32_Service and properties of each instance.

Note
Remember that you can perform data queries only from one class at a time. For
example, the following query will produce an invalid query error:
Get-WMIObject -Query "SELECT * FROM win32_Service, Win32_Process"

What if we want to limit the instances to one particular service? Let us say AudioSrv. We can
use WHERE clause to filter that. Here is how we do it:

$query = "SELECT * FROM Win32_Service WHERE Name='AudioSrv'"
Get-WMIObject -Query $query

This will list only one instance and the properties of that instance. WHERE is used to narrow the
scope of retrieved data. This keyword can be used in all of the three query types. In general,
WHERE clause when used with SELECT statement can take one of the following forms:

SELECT * FROM class WHERE property operator constant
SELECT * FROM class WHERE constant operator property

[18]

In the above two forms, property denotes a valid property of a WMI instance, operator is any
valid WQL operator and constant must be of the correct type for the property. Let us look at an
example for the second form of using WHERE.

$query = "SELECT Name, State FROM Win32_Service WHERE 'AudioSrv' LIKE Name"
Get-WMIObject -Query $query

In the above example, we replaced ‘*’ with Name & State to limit the number of properties in
the output. This query, when executed, gets us an instance of Win32_Service with name
‘audiosrv’ and lists only the name and state properties of the service. By doing so and in case of
remote query execution, we are reducing the bandwidth required to execute the query and the
amount of data we get in return.

Note
The above query outputs the system properties such as __PATH, etc in the output. This
is because the default formatting for the WMI class is lost when we specify a selected
set of properties.

Using Operators
In this section, we shall look at different operators that can be used with WMI data queries and
how we can use them.

LIKE
In the preceding example, we filtered out the instances by using WHERE clause and specifying
that we need only one instance of Win32_Service. What if we don’t know the exact service
name but we know that it has the word ‘audio’ in it.

$query = "SELECT * FROM Win32_Service WHERE Name LIKE '%Audio%'"
Get-WMIObject -Query $query

This will list all the services that have the word ‘audio’ in the name of the service.

Note
You can use -Filter parameter instead of a WHERE clause or even -Query. When using -
Filter, Get-WMIObject cmdlet builds the required WQL statement internally. For
example:
Get-WMIObject -Class Win32_Service -Filter {Name='AudioSrv'}

This is just a preference and in the scope of this book, I will use -Query only.

Observe carefully how we used the keyword LIKE and wrapped the word audio between %%.
We have known, probably since the DOS days that ‘*’ is the wildcard character for specifying
something like “get anything that has the word”. However, in WQL, ‘%’ is the wild card
character when using LIKE keyword. There are also other meta characters such as [], ^, and _
that we can use with LIKE operator.

Here are some examples of how we use these additional meta characters.

[19]

$query = "SELECT * FROM Win32_Service WHERE Name LIKE '[af]%'"
Get-WMIObject -Query $query

The above query gets us all services with a name that starts with ‘a’ or ‘f’. The way we use ‘[]’ is
very similar to its usage in regular expressions. This is used to specify a range of characters.

In case you need all services that start with any letter from ‘a’ to ‘f’, we still use ‘[]’ meta
character but specify the range. Here is how we do it:

$query = "SELECT * FROM Win32_Service WHERE Name LIKE '[a=f]%'"
Get-WMIObject -Query $query

Note
You can either use ‘[a=f]%’ or ‘[a-f]%’ in the above query. Although, MSDN
documentation specifies only ‘=’; the ‘-‘ character has the same meaning.

Let us look at another meta character, ‘^’.

$query = "SELECT * FROM Win32_Service WHERE Name LIKE '[^afgh]%'"
Get-WMIObject -Query $query

The above query gets us only the services with a name that does not start with ‘a’ or ‘f’ or ‘g’ or
‘h’. In the above query, by using ‘^’, we specify that we want to list all the services with names
not starting with the characters in the range.

The last meta character is ‘_’ and it matches exactly one character in the specified position
similar to ‘?’ in DOS. Here is how we use it.

$query = "SELECT * FROM Win32_Service WHERE Name LIKE '%a_diosrv%'"
Get-WMIObject -Query $query

What we are trying in the above query is obvious. The ‘_’ gets replaced by any character and
the matching service will be listed in the output.

AND, OR, and NOT
We can test for multiple conditions inside the WHERE clause. Let us see how we can do that.
For example, if we want to list all services in the ‘running’ state but the StartMode set to
‘manual’

$query = "SELECT * FROM Win32_Service WHERE State='Running' AND
StartMode='Manual'"
Get-WMIObject -Query $query

Simple! By using AND, we specify that we need both conditions to evaluate to TRUE. What if we
want to list all services that are in ‘running’ state and StartMode set to ‘manual’ and the service
name starts with the characters ‘a’ or ‘f’. We have seen the first part of this query already. From

[20]

the description of the problem, we know that we need to use another AND operator. Here is
how the query will look like:

$query = "SELECT * FROM Win32_Service
 WHERE (State='Running' AND StartMode='Manual')
 AND (Name LIKE '[af]%')"
Get-WMIObject -Query $query

See how we did that. Enclosing the conditions in parentheses is not very important, at least in
this query. But, this is a good practice to express a query like that. In the later sections, we will
see where using parentheses is necessary.

Now, let us look at OR operator. By using OR, we specify that we want to get a list of instances
whenever one of more conditions evaluate to TRUE. Let us see an example:

$query = "SELECT * FROM Win32_Service WHERE State='Stopped' OR
State='Paused'"
Get-WMIObject -Query $query

In this preceding example, we are retrieving all instances of Win32_Service where the service
state is either ‘stopped’ or ‘paused’. Now, let us make it a bit more complex by adding one
more condition. Let us get a list of all services that are either in ‘running’ or ‘paused’ state AND
with name that starts with either ‘a’ or ‘f’. If the problem description is not clear, read it again.
Now, run the below query and see what you get in the output.

$query = "SELECT * FROM Win32_Service WHERE State='Running' OR State='Paused'
AND Name LIKE '[af]%'"
Get-WMIObject -Query $query

So, what was there in output? All instances of running services irrespective of the service name
condition we wanted to check. Why did that happen? Because, when using OR, it is just enough
to evaluate any one condition to TRUE. So, whenever service state was ‘running’, this query
returned the instance of the class. It did not really bother to look at other conditions. How do
we make this work to get only what we want?

Here is how we do it:

$query = "SELECT * FROM Win32_Service WHERE (State='Running' OR
State='Paused') AND Name LIKE '[af]%'"
Get-WMIObject -Query $query

See how we combined the first two conditions. This is where parentheses are useful.

Let us now see how we can use NOT operator. Here is a very simple example and probably does
not require any explanation.

$query = "SELECT * FROM Win32_Service WHERE NOT (State='Running')"
Get-WMIObject -Query $query

The same thing can be expressed using the other operators such as ‘<>’ and ‘!=’ also.

[21]

$query = "SELECT * FROM Win32_Service WHERE State<>'Running'"
Get-WMIObject -Query $query

$query = "SELECT * FROM Win32_Service WHERE State!='Running'"
Get-WMIObject -Query $query

All three preceding examples have the same meaning. They are just more than one way to get
the same result.

IS, IS NOT, and NULL
You can also use IS and IS NOT operators within WHERE clause. However, the query will be valid
only if the constant is NULL. For example, the following query

$query = "SELECT * FROM Win32_LogicalDisk WHERE FileSystem IS NULL"
Get-WMIObject -Query $query

…is valid and returns the disk drive information with no file system information. On my system,
this query returns the DVD drive information.

Note
Some properties of the WMI classes may not be displayed when using default output
formatting. For example, when we just query using “Select * From Win32_LogicalDisk”,
we won’t see FileSystem property. To see all the properties, you need to pipe the
output of Get-WMIObject cmdlet to Format-List *.

The following example,

$query = "SELECT * FROM Win32_LogicalDisk WHERE DriveType IS 5"
Get-WMIObject -Query $query

…will result in an invalid query error since the constant we specified is not NULL.

Using the IS NOT operator combination is similar to the first example using the IS operator.

$query = "SELECT * FROM Win32_LogicalDisk WHERE FileSystem IS NOT NULL"
Get-WMIObject -Query $query

ASSOCIATORS OF
As we saw in the previous section, SELECT queries can be used to retrieve instances of a WMI
class. But SELECT queries are not the only way to query for instances. We can also use the
‘ASSOCIATORS OF’ keyword to do the same. However, there is a difference. SELECT queries
always return a collection of instances of a WMI class whereas “ASSOCIATORS OF” returns a
collection of WMI objects that belong to different WMI classes or associated WMI classes.
Before we dig too much into this, let us first understand, what are these associated WMI
classes?

[22]

Take an example of a Windows service. WMI has several classes that represent windows service
information. Let us look at Win32_Service and explore how this class is associated with other
classes in WMI. We shall use CIM Studio for this purpose. To see this,

 Open CIM Studio from WMI Tools.

 Connect to root\cimv2 namespace.

 Double-click on Win32_Service class; retrieve all instances by clicking on icon.

 In the results window, right-click on “Netlogon” instance and select “Go to Object”.

 Now, select the “Associations” Tab.

The below screen capture shows the associations. If we mouse-over the icon, we can see a
class name that relates Win32_Service to Win32_ComputerSystem. This class,
Win32_SystemServices, is called an association class.

The Netlogon service depends on LanmanWorkstation service. This relation is indicated by
another association class Win32_DependentService. And, finally, the third association class –
Win32_LoadOrderGroupServiceMembers – relates a load order group and a base service.

In the above example, Win32_Service.Name=”NetLogon” is the source instance while instances
of Win32_ComputerSystem, Win32_Service.Name=”LanmanWorkstation”, and
Win32_LoadOrderGroup.Name=”MS_WindowsRemoteValidation” are the target instances or
endpoints.

Now, using the “ASSOCIATORS OF” keyword, we can retrieve all instances that are associated
with a particular source instance. Here is the general syntax of this keyword:

ASSOCIATORS OF {ObjectPath}

Note that the brackets are part of the syntax. Any valid ObjectPath can be used for ObjectPath.
Let us look at an example to understand this.

$query = "ASSOCIATORS OF {Win32_Service.Name='NetLogon'}"
Get-WMIObject -Query $query

[23]

The above snippet shows the basic usage of ‘ASSOCIATORS OF’. Make a note of the syntax
inside curly brackets. This query — when executed — gets all the instances of all associated
classes. So, this can take a while and the output can be overwhelming. Remember, this query
without Name=’NetLogon’ will not return anything. This is required and the property – ‘Name’
in this case – should be the “key”. You can identify the property that is designated as key by
looking at properties list in WMI CIM Studio. This property uniquely identifies the WMI class
instance.

Look at the icon next to the property ‘Name’. This identifies the key property.
Similar to the data queries using SELECT keyword, the association queries can also use WHERE
clause. However, the usage of WHERE clause is a bit different from how you do that with
SELECT queries. There are predefined keywords that you can use with WHERE clause. They are:

ASSOCIATORS OF {ObjectPath} WHERE
AssocClass = AssocClassName
ClassDefsOnly
RequiredAssocQualifier = QualifierName
RequiredQualifier = QualifierName
ResultClass = ClassName
ResultRole = PropertyName
Role = PropertyName

Note
You cannot use logical operators such as AND, OR, and NOT within the WHERE clause
while using ASSOCIATORS OF keyword. You can use more than one keyword by just
separating them by a space.

Let us see the examples around how to use these keywords within WHERE clause.

ClassDefsOnly

Let us first see a way to list only the associated class names as shown in the screenshot above.
You can use the keyword ClassDefsOnly for this purpose.

$query = "ASSOCIATORS OF {Win32_Service.Name='NetLogon'} WHERE ClassDefsOnly"
Get-WMIObject -Query $query

[24]

As we see, the list of associated class names we see here is the same as what we saw in the CIM
Studio output.

AssocClass

The AssocClass keyword indicates that the returned endpoints must be associated with the
source through the specified class or one of its derived classes. If you want to retrieve the
instance of associated class thorugh a single association class:

$query = "ASSOCIATORS OF {Win32_Service.Name='NetLogon'} WHERE
AssocClass=Win32_DependentService"
Get-WMIObject -Query $query

This query gets us the endpoint instance associated through Win32_DependentService
association class. This is shown in the below screen capture.

ResultClass

This keyword indicates that you want to retrieve the endpoints associated only with the
specified ResultClass. For example,

$query = "ASSOCIATORS OF {Win32_Service.Name='NetLogon'} WHERE
ResultClass=Win32_LoadOrderGroup"
Get-WMIObject -Query $query

ResultRole

The ResultRole keyword indicates that the returned endpoints must play a particular role in
their association with the source object.

For a moment think that Get-Service cmdlet never existed. Now, if you want to get a list of
services that depend on a specific service without using “ASSOCIATORS OF”, we would do that
by parsing Win32_DependentService instances. However, using ‘ASSOCIATORS OF’, we can do
the same by:

$query = "ASSOCIATORS OF {Win32_Service.Name='LanmanWorkstation'} WHERE
ResultRole=Dependent"
Get-WMIObject -Query $query

[25]

The above query will list all the services that depend on LanmanWorkstation service. And, this
is similar to:

Get-Service -Name "LanmanWorkstation" -DependentServices

Similarly, to get a list of services that a specific service depends on:

$query = "ASSOCIATORS OF {Win32_Service.Name='NetLogon'} WHERE
ResultRole=Antecedent"
Get-WMIObject -Query $query

This example will list LanmanWorkstation as NetLogon service depends on this service to start.
And, this is similar to running:

Get-Service -Name "Netlogon" -RequiredServices

So, what are these dependent and antecedent roles we used in the above queries? Let us
slow down a bit and understand the WMI relationships.

We can classify WMI relationships into three basic types:

 Dependency relationship

 Element-Setting relationship

 Component relationship

On a related note, MSDN documentation for several WMI classes lists properties such as
Dependent, antecedent, Element, setting, Group Component, and part component. We shall
explore the meaning of these in the coming sections.

Dependency Relationship
This relationship defines an association where one object is dependent on another object –
antecedent. The association class we just used – Win32_DependentService – is a classic
example. This class defines a dependency relationship between two Windows services. From
the above examples, the Win32_Service.Name=”NetLogon” is dependent on
Win32_Service.Name=”LanmanWorkstation” – which is the antecedent. Now, go back to the
examples and read them again.

Another example is the Win32_DiskDriveToDiskPartition association class. This class relates
Win32_DiskDrive and Win32_DiskPartition classes where Win32_DiskDrive plays the
antecedent and Win32_DiskPartition plays the dependent role. In simple English, a partition is
dependent on a disk drive and by specifying one of these roles – dependent or antecedent; we
can get either class instances – Win32_DiskDrive or Win32_DiskPartition, respectively.

So, if we want to query for all disk partitions on a specific hard drive:

[26]

$query = "ASSOCIATORS OF {Win32_DiskDrive.DeviceID='\\.\PHYSICALDRIVE0'}
WHERE ResultRole=Dependent"
Get-WMIObject -Query $query

Here is what I see on my system:

Element-Setting Relationship
This relationship defines the association between an element – for example a network adapter
– and the settings for that element. These association classes have properties named Element
and Setting. For example, take a look at Win32_NetworkAdapterSetting class. The following
screen capture from CIM studio shows the two properties of this association class.

Win32_NetworkAdapterSetting association class defines a relationship between
Win32_NetworkAdapter and Win32_NetworkAdapterConfiguration classes. In this relationship,
Win32_NetworkAdapter is the Element and Win32_NetworkAdapterConfiguration is the Setting.
How do we use this? Let us look at a few examples. We can retrieve the network adapter
information by using the following query:

$query = "ASSOCIATORS OF {Win32_NetworkAdapterConfiguration.Index=12} WHERE
ResultRole=Element"
Get-WMIObject -Query $query

Similarly, by querying Win32_NetworkAdapter class and for ‘setting’ role, we get the network
adapter configuration information.

Note

[27]

In the above query, I used network adapter index 12. This may or may not exist on your
system. Use Get-WMIObject –Class Win32_NetworkAdapter to find the index value for
your network adapters.

$query = "ASSOCIATORS OF {Win32_NetworkAdapter.DeviceID=12} WHERE
ResultRole=Setting"
Get-WMIObject -Query $query

Component relationship
This WMI relationship contains two or more classes as GroupComponent and PartComponent.
Let us understand this with the help of an example. The Win32_GroupUser WMI class
associates Win32_Group (GroupComponent) and Win32_Account (PartComponent) classes.
Win32_GroupUser defines a relationship between a group and an account that is a member of
the group.

Let us see a few examples now.

We can get a list of group memberships for any given user account using the following query:

$query = "ASSOCIATORS OF {Win32_Account.Name='DemoUser1',Domain='DomainName'}
WHERE ResultRole=GroupComponent ResultClass=Win32_Account"
Get-WMIObject -Query $query | Select Name

In the above query, we list all the groups in which DemoUser1 is a member. In the ObjectPath,
we used both Name and Domain properties. This is required as both of these properties are the
key properties in Win32_Account WMI class. We will get an invalid ObjectPath error if one of
the properties is not specified. Also, make a note that the value of Domain property can be
either a domain name or the local computer name.

We were also limiting the ResultClass to Win32_Account. This helps us in getting only the group
details. Otherwise, we may end up seeing computer system details also as a part of the query
output.

Similarly, if we want to get a list of all users in a group:

[28]

$query = "ASSOCIATORS OF {Win32_Account.Name='DemoGroup2',Domain='DomainName'}
WHERE ResultRole=PartComponent ResultClass=Win32_Account"
Get-WMIObject -Query $query | Select Name

As shown in the screen capture above, by executing the query, we see a list of all users who are
part of DemoGroup2.

That is about WMI relationships. Let us move on to other interesting aspects of using
ASSOCIATORS OF keyword.

Role
The Role keyword indicates that the returned endpoints participate in an association with the
source object where the source object plays a particular role.

The difference between this keyword and ResultRole keyword is: when using ResultRole
keyword, we indicate that the endpoint must play a particular role in association with the
source instance. When using Role keyword -- we specify that the endpoints participate in an
association where the source object plays a particular role.

Now, let us see some examples to understand this. We can just tweak the query that we used
to list all members of a given group to:

$query = "ASSOCIATORS OF {Win32_Account.Name='DemoGroup2',Domain='DomainName'}
WHERE Role=GroupComponent ResultClass=Win32_Account"
Get-WMIObject -Query $query | Select Name

The result of both these queries is same. They just list all members of DemoGroup2. However,
observe the difference between two queries. In the second variation, using Role keyword, we
queried for all instances of Win32_Account.Name=’DemoGroup2’ where Win32_Account is a
GroupComponent.

RequiredQualifier and RequiredAssocQualifier
There are other keywords such as RequiredQualifier and RequireAssocQualifier.

RequiredQualifier keyword indicates that the returned endpoints associated with the
source object must include the specified qualifier. The RequiredAssocQualifier keyword
indicates that the returned endpoints must be associated with the source object
through an association class that includes the specified qualifier.

[29]

WMI qualifiers are values that provide additional information about classes, associations,
indications, methods, method parameters, triggers, instances, properties, or references. These
qualifiers5 can be used to narrow the result set from the WMI query. There is no in-depth
discussion of these two keywords here.

This brings us to the end of discussion on “ASSOCIATORS OF” keyword. Let us now move on to
the final keyword used in WMI data queries.

REFERENCES OF
This keyword retrieves all association instances that refer to a particular source instance. The
REFERENCES OF statement is similar to the ASSOCIATORS OF statement in its syntax.

REFERENCES OF {ObjectPath}

However, rather than retrieving endpoint instances, it retrieves the intervening association
instances. Let us re-visit an earlier example to understand this.

In the above screen capture from CIM Studio, Win32_SystemServices, Win32_DependentService,
and Win32_LoadOrderGroupServiceMembers are the association classes. When using
“REFERENCES OF” keyword alone, we retrieve the instances of these association classes
whereas using “ASSOCIATORS OF” keyword, we retrieve the instances of endpoints –
Win32_ComputerSystem, Win32_Service, and Win32_LoadOrderGroup. Let us see both
keywords side by side in an example:

$query = "REFERENCES OF {Win32_Service.Name='Netlogon'} WHERE ClassDefsOnly"
Get-WMIObject -Query $query

$query = "ASSOCIATORS OF {Win32_Service.Name='Netlogon'} WHERE ClassDefsOnly"
Get-WMIObject -Query $query

5
 WMI Standard Qualifiers: http://msdn.microsoft.com/en-us/library/aa393651(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/aa393651(v=vs.85).aspx

[30]

You see the difference. By using the ClassDefsOnly keyword, we limit the verbosity of the
output and this helps us understand the difference.

Similar to ASSOCIATORS OF keyword, you can use the WHERE clause with “REFERENCES OF”
keyword also. There are predefined keywords that you can use with WHERE clause. The general
syntax for using WHERE clause is:

REFERENCES OF {ObjectPath} WHERE
ClassDefsOnly
RequiredQualifier = QualifierName
ResultClass = ClassName
Role = PropertyName

The usage of these keywords is similar to “ASSOCIATORS OF”.
This concludes this chapter on WMI data queries. We looked at several keywords and operators
in this chapter. In the next chapter, we shall look at how to use WMI query language for WMI
event queries.

[31]

WMI Event Queries: Introduction

Just as there is a WMI class that represents each type of system resource that can be managed
using WMI, there is a WMI class that represents each type of WMI event. When an event that
can be monitored by WMI occurs, an instance of the corresponding WMI event class is created.
A WMI event occurs when that instance is created.

Windows PowerShell v2 provides a cmdlet — Register-WMIEvent – to consume WMI events.
There are a couple of different ways we can use this cmdlet. You can either use -Class or -Query
parameters to create a temporary6 event consumer. When using -Class parameter, we need to
specify a WMI event class. So, what happens if the value provided to the -Class parameter isn’t
a WMI event class? Yes, PowerShell complains about it.

So, from the above error, we understand that Win32_Process isn’t a WMI event class. But, how
do we find what are the WMI event classes?

#Get all classes that are WMI event classes
#filter class names for Win32 classes
Get-WMIObject -Query "SELECT * FROM meta_class WHERE (__This ISA '__Event')
AND (__Class like 'win32%')"

This will list all WMI event classes that start with Win32 prefix. We will see many more if we
remove the second condition in the WHERE clause but for starters, this is good enough.
Win32_ProcessStartTrace is one of the WMI event classes listed when we execute the above
PowerShell command. This class indicates the new process started event. We can use this WMI
class to subscribe to all process start events. For example,

Register-WMIEvent -Class Win32_ProcessStartTrace -SourceIdentifier "Process
Started" -Action {

Write-Host "$($Event.SourceEventArgs.NewEvent.ProcessName)
just started"

}

Note
-Action parameter can be used to specify the scriptblock used to take some action when
the event gets fired. Alternatively, you can use Wait-Event and Get-Event cmdlets to
receive the events.

6
 Event Consumers: http://msdn.microsoft.com/en-us/library/aa393013(VS.85).aspx#event_consumers

http://msdn.microsoft.com/en-us/library/aa393013(VS.85).aspx#event_consumers

[32]

Note
You have to open the PowerShell console in elevated mode. Else, we will see an access
denied message every time we try using Register-WMIEvent.

This command will register an event consumer and display a message with the newly created
process name. However, this will result in receiving the messages at the console every time any
process starts and not just the one we are interested in.

So, what if we are interested only in one specific process? We could have easily filtered out the
unnecessary processes before displaying the process name at the console. But, why even
receive the event when we don’t need it? This is where -Query parameter comes handy. Look at
this example:

#Register-WMIEvent using -Query
Register-WMIEvent -Query "SELECT * FROM Win32_ProcessStartTrace WHERE
ProcessName='notepad.exe'" -Action {

Write-Host "New notepad process created"
}

Note
It is possible to register for a remote WMI event using Register-WMIEvent cmdlet and
the -ComputerName parameter. This book, however, looks at the local WMI events only.

The WQL statement we used should be familiar to you by now. This query can be used to
narrow down the events to just the ones we need.

There are many other ways to monitor process creation using WMI events and WQL. What we
just saw is one way of doing it. We shall see the other methods in the later sections.

In the earlier section, we saw how to list WMI event classes and how to use Register-WMIEvent

[33]

to subscribe to the events from that WMI class. In the case of a WMI event class, the class itself
provides the events. Hence, we can use the class name directly and create an event subscriber.

In the case of non-event classes, WMI does all the hard lifting of monitoring the class instances
and providing whenever an instance is created, modified, or deleted. Now, how do we
subscribe to the events from these non-event classes? This question brings us to the discussion
on types of event queries.

Event Query Types
There are three types of event queries in WMI: intrinsic events, extrinsic events, and timer
events. Here is a brief discussion on each of these event types:

Intrinsic Events
Intrinsic events are used to monitor a resource represented by a class in the CIM repository. In
other words, the intrinsic events occur in response to a change in the standard WMI data model.
WMI creates intrinsic events for objects stored in the WMI repository. A provider generates
intrinsic events for dynamic classes, but WMI can create an instance for a dynamic class if no
provider is available. WMI uses polling to detect the changes. There are many system classes
that WMI uses to report intrinsic events. However, the ones that are most interesting and
useful are __InstanceCreationEvent, __InstanceModificationEvent, and __InstanceDeletionEvent.
Hence, monitoring resources on a system involves monitoring of these system classes. The later
chapters in this book dig deep in to the intrinsic events and show examples of subscribing to
these events.

Extrinsic Events
Extrinsic events represent events that do not directly link to standard WMI model. For example,
Windows registry defines extrinsic events for all registry change events. For intrinsic events,
having a WMI provider isn’t mandatory. This is mostly because they are defined within the
standard WMI model and WMI takes care of these if there is no WMI provider for a given
resource in the standard WMI model. However, since extrinsic events are outside of the
standard WMI model, having a WMI provider is mandatory. The later sections of this book will
provide an in-depth discussion on the Windows registry events and show a few examples.

Timer Events
Timer events are a specialized kind of intrinsic event. WMI uses preconfigured event timers
within the repository to generate timer events. In the pre Windows 2003 days, we had to use
__AbsoluteTimerInstruction7 and __IntervalTimerInstruction8 to create absolute and interval
timer instructions, respectively. However, with the Win32_LocalTime class, this isn’t necessary
any more. We shall see how to use this class to create timer events and examples of how to use
the timer events to create complex scheduling tasks in the later parts of this book.

7
 __AbsoluteTimerInstruction class: http://msdn.microsoft.com/en-us/library/aa394620(v=vs.85).aspx

8
 __IntervalTimerInstruction class: http://msdn.microsoft.com/en-us/library/aa394654(v=VS.85).aspx

http://msdn.microsoft.com/en-us/library/aa394620(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394654(v=VS.85).aspx

[34]

Before we dig into the event types, it is important to understand the WMI query syntax used
for the above query types. The WMI query syntax for event queries is a bit different and
deserves a discussion.

WQL Syntax for event queries
As we discussed earlier, we use SELECT statement for event queries too. We can combine this
with other keywords such as WITHIN, HAVING, and GROUP to change how we receive these
WMI events. Here is the general syntax for WQL event queries:

EVENT-WQL = “SELECT” <PROPERTY-LIST> “FROM” /
<EVENT-Class-NAME> <OPTIONAL-WITHIN> <EVENT-WHERE>

OPTIONAL-WITHIN = ["WITHIN" <INTERVAL>]
INTERVAL = 1*DIGIT
EVENT-WHERE = ["WHERE" <EVENT-EXPR>]

EVENT-EXPR = ((<INSTANCE-STATE> “ISA” <CLASS-NAME> <EXPR2>) /
<EXPR>)
["GROUP WITHIN" <INTERVAL>
(["BY" [<INSTANCE-STATE> DOT] <PROPERTY-NAME>]
["HAVING" <EXPR>]])

INSTANCE-STATE = “TARGETINSTANCE” / “PREVIOUSINSTANCE”

In the above syntax specification, we know the SELECT, FROM, and WHERE keywords. There are
other keywords such as WITHIN, GROUP, BY, and HAVING. Let us look at each one of these
keywords now.

WITHIN
WITHIN keyword is used to specify the polling interval or grouping interval (when used with
GROUP clause) for the events. A polling interval is the interval that WMI uses as the maximum
amount of time that can pass before notification of an event must be delivered. The general
syntax to specify the polling interval,

SELECT * FROM EventClass WITHIN interval WHERE property = value

The polling interval value is specified as number of seconds and is a floating point number. So,
we can specify values smaller than one second. However, specifying a polling interval smaller
than one second (for example, 0.1) may cause system slow down due to the resource intensive
nature of event queries. The recommended values for the polling interval really depend on the
event class. Never use a small value here unless you really need the event notification to be
delivered immediately.

[35]

Let us look at an example:

#Build a WMI query for receiving an event
$query = "SELECT * FROM __instanceCreationEvent WITHIN 10 WHERE
TargetInstance ISA 'Win32_Process'"

#Register the event
Register-WMIEvent -Query $query -Action {Write-Host "New Process created"}

GROUP
Using GROUP clause causes WMI to generate a single notification to represent a group of
events. When used in a WMI event query, this returns an instance of __AggregateEvent that
contains an embedded object of one of the instances received during the grouping interval and
the number of such events received. These two are represented by ‘Representative’ &
‘NumberOfEvents’ properties respectively.

The grouping interval specifies the time period, after receiving an initial event, during which
WMI should collect similar events. The GROUP clause must contain a WITHIN clause to specify
the grouping interval and can contain either the BY or the HAVING keyword, or both. The
GROUP clause is placed after the WHERE clause if the query contains a WHERE clause. Here is
the syntax:

SELECT * FROM EventClass [WHERE property = value] GROUP WITHIN interval

This is especially useful when we don’t want to receive an event notification every time the
event fires. For example, when monitoring a system, we may not want to receive a notification
every time a specific event log gets generated. Instead, we can use GROUP clause to specify a
grouping interval and receive only one notification for all the desired event logs generated
within the grouping interval.

Take a look at this example:

#Build a WMI query for receiving an event
$query = "SELECT * FROM __instanceCreationEvent WHERE TargetInstance ISA
'Win32_NTLogEvent' AND TargetInstance.EventCode=1980 GROUP WITHIN 300"

#Register the event
Register-WMIEvent -Query $query -Action {Write-Host "Eventlog Arrived"}

This is different from how polling interval works. When using polling interval, WMI waits until
the time specified is elapsed and sends all the events that were generated during the polling
interval. However, in case of grouping interval, as mentioned above, one event will be received
by the subscriber but the number of events occurred during the grouping interval will be known.

[36]

HAVING

In the above example, we will receive an event notification for all the events received within

the grouping interval. But, what if we want to receive the event notification only when ten such

event logs are generated within the grouping interval? This is where HAVING plays an

important role. Let us look at how we can modify the above sample code to use the HAVING

keyword.

#Build a WMI query for receiving an event
$query = "SELECT * FROM __instanceCreationEvent WHERE TargetInstance ISA
'Win32_NTLogEvent' AND TargetInstance.EventCode=1980 GROUP WITHIN 300 HAVING
NumberOfEvents > 10"

#Register the event
Register-WMIEvent -Query $query -Action {Write-Host "Eventlog Arrived"}

I mentioned earlier that by using GROUP returns a property called NumberOfEvents that
contains the number of events received during the grouping interval. Now, we use that
property along with HAVING keyword to filter event notifications. Here is the syntax:

SELECT * FROM EventClass [WHERE property = value]
GROUP WITHIN interval HAVING NumberOfEvents operator constant

So, using the HAVING query as shown above, an event notification is delivered only when WMI
receives more than 10 events in the grouping interval.

BY
You can use the BY keyword along with the GROUP clause to group events by one or more
properties of the event class. The general syntax for using BY is as follows:

SELECT * FROM EventClass [WHERE property = value]
GROUP WITHIN interval [BY property_list]

For example, the following example groups all events received in 300 seconds by the
TargetInstance.SourceName property.

#Build a WMI query for receiving an event
$query = "SELECT * FROM __instanceCreationEvent WHERE TargetInstance ISA
'Win32_NTLogEvent' GROUP WITHIN 300 BY TargetInstance.SourceName
HAVING NumberOfEvents > 10"

#Register the event
Register-WMIEvent -Query $query -Action {Write-Host "Eventlog Arrived"}

In the above example, the events are grouped by the TargetInstance.SourceName property and
an event notification is delivered only if the number of events received during the grouping
interval exceeds 10.

[37]

So far, we looked at all the important keywords that can be used while building WMI event
queries. But, if you have observed, I kept using the words EventClass and TargetInstance. What
are these? This is the topic of discussion in the next few chapters.

[38]

Intrinsic Event Queries

Intrinsic events are used to monitor a resource represented by a class in the CIM repository. In
other words, the intrinsic events occur in response to a change in the standard WMI data model.
WMI creates intrinsic events for objects stored in the WMI repository. A provider generates
intrinsic events for dynamic classes, but WMI can create an instance for a dynamic class if no
provider is available. WMI uses polling to detect the changes.

There are many system classes9 that WMI uses to report intrinsic events. However, the ones
that are most interesting and useful are __InstanceCreationEvent, __InstanceModificationEvent,
and __InstanceDeletionEvent. Hence, monitoring resources on a system involves monitoring of
these system classes. These classes are derived from the __InstanceOperationEvent class which
is derived from the __Event system class under root\Default namespace. The following screen
capture of WMI CIM Studio shows this hierarchy.

The general WQL syntax for WMI intrinsic event queries is:

SELECT Property_List FROM EventClass WITHIN PollingInterval

WHERE TargetInstance | PreviousInstance ISA WMIClassName
AND TargetInstance.WMIClassPropertyName = Value

This is something similar to what we saw in the earlier discussion about WQL syntax for event
queries. The EventClass can be any of the system classes such as __InstanceCreationEvent,
__InstanceModificationEvent, __InstanceDeletionEvent, and __InstanceOperationEvent.

9
 WMI System classes: http://msdn.microsoft.com/en-us/library/aa394583(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/aa394583(v=vs.85).aspx

[39]

Note
The PreviousInstance and TargetInstance represent the state of the object prior and
after the event respectively. However, make a note that the PreviousInstance property
is available only when using __InstanceModificationEvent class.

So, when do we use each of these system classes mentioned above?

__InstanceCreationEvent
This class is used when we want to receive a notification upon creation of an instance. For
example, we can use this event class when you want to receive an event notification every time
a new process gets created. This can be done by,

#Query for new process events
$query = "SELECT * FROM __InstanceCreationEvent WITHIN 10 WHERE
TargetInstance ISA 'Win32_Process'"

#Register WMI event
Register-WMIEvent -Query $query -Action {Write-Host "New Process Created. Do
something useful here"}

__InstanceDeletionEvent
This class is used when we want to receive a notification upon deletion of an instance. For
example, we can use this class when we want to receive an event notification every time a
process is terminated. For example,

#Query for new process events
$query = "SELECT * FROM __InstanceDeletionEvent WITHIN 5 WHERE TargetInstance
ISA 'Win32_Process'"

#Register WMI event
Register-WMIEvent -Query $query -Action {Write-Host "A Process terminated. Do
something useful here"}

__InstanceModificationEvent
This class is used when we want to monitor changes to an existing instance or a resource. For
example, we can use this class when we want to receive an event notification when the
processor utilization on a system goes beyond a specified usage threshold. For example,

#Query for new process events
$query = "SELECT * FROM __InstanceModificationEvent WITHIN 5 WHERE
TargetInstance ISA 'Win32_Processor' AND TargetInstance.LoadPercentage > 80"

#Register WMI event
Register-WMIEvent -Query $query -Action {Write-Host "Processor utilization is
more than 80%. Do something useful here"}

Using the above query, we will know whenever the CPU load goes beyond 80%. Now, what if
we want to receive the event only when the change in load percentage is around a specified

[40]

range? This is where the PreviousInstance will play a role. As discussed earlier, the
TargetInstance and PreviousInstance are the embedded objects of __InstanceModificationEvent.
So, we will have access to both the instances.

Now, going back to the example:
#Query for new process events
$query = "Select * FROM __InstanceModificationEvent WITHIN 5
 WHERE TargetInstance ISA 'Win32_Processor'
 AND (TargetInstance.LoadPercentage >= 80
 AND PreviousInstance.LoadPercentage >= 70)"

#Register WMI event
Register-WMIEvent -Query $query -Action {Write-Host "Processor utilization is
more than 80%. Do something useful here"}

All of the examples above just displayed a message when the event notification was received.
Instead, we can do something useful within the script block.

For example, in the __InstanceCreationEvent example, we are just displaying that a new
process was created but not the process name that just got created. So, how do we access that
information in the script block and tell a user the name of the process that was created?

Simple, PowerShell creates an automatic variable called $event and stores the last event
received in that variable. And, this automatic variable can be accessed in the -Action scriptblock
you specify during a WMI event registration. Let us see an example:

#Query for new process events
$query = "SELECT * FROM __InstanceCreationEvent WITHIN 10 WHERE
TargetInstance ISA 'Win32_Process'"

#Register WMI event
Register-WMIEvent -Query $query -Action { $global:myEvent=$event } | Out-Null

[41]

If you see in the above example, we made an event registration for process creation events and
in the -Action script block, assigned the $event variable to a variable in the global scope
($myEvent). This is essential because we cannot access the $event variable outside the -Action
script block. Once the registration was done, I opened notepad application. This will fire the
__InstanceCreationEvent and $myEvent should have the details around the event. So, I tried
looking at all the members of this event. After exploring that a bit, I figured out that
$myEvent.SourceEventArgs.NewEvent.TargetInstance.Name has the name of the new process
which is notepad.exe. This is precisely what we see in the last line there.

$Event.SourceEventArgs.NewEvent.TargetInstance will have the instance of the newly created
process. Remember, $event automatic variable won’t be available outside of the –action
Scriptblock. And, that is the reason we assigned it to global variable called $myEvent. Go
explore10 more about this.

As we have seen in the system class hierarchy, the above three classes are derived from
__InstanceOperationEvent class. We can use this class as well for our event subscriptions. Here
is how we do it:

$query = "SELECT * FROM __InstanceOperationEvent WITHIN 10 WHERE
TargetInstance ISA 'Win32_Process'"

Register-WMIEvent -Query $query -Action {
 $processName = $Event.SourceEventArgs.NewEvent.TargetInstance.Name
 Switch ($event.SourceEventArgs.NewEvent.__CLASS) {
 '__InstanceCreationEvent' {
 Write-Host "New Process created: $($processName)"
 }

10

 Eventing – Scout the Action block’s Automatic variables:

https://robertrobelo.wordpress.com/2010/10/15/eventing-scout-the-action-blocks-automatic-variables/

https://robertrobelo.wordpress.com/2010/10/15/eventing-scout-the-action-blocks-automatic-variables/

[42]

 '__InstanceDeletionEvent' {
 Write-Host "A Process terminated: $($processName)"
 }
 '__InstanceModificationEvent' {
 Write-Host "Process was modified: $($processName)"
 }
 }
}

If we look at the -Action scriptblock, we are actually checking for the actual instance class type
again using a switch statement. This is required because __InstanceOpeartionEvent can be any
of the three types. It does not have an instance of its own. This example is to just show you how
to use the __InstanceOperationEvent class. This, in fact, results in a flood of events because
every time a process working set is changed, it triggers a __InstanceModificationEvent.

This is it about intrinsic events and how to access or subscribe to them. In the next chapter, we
shall see what extrinsic events are and how events from Windows registry provider can be used
to monitor changes to registry.

[43]

Extrinsic Event Queries

Extrinsic events represent events that do not directly link to standard WMI model. For example,
Windows registry defines extrinsic events for all registry change events. For intrinsic events,
having a WMI provider isn’t mandatory. This is because they are defined within the standard
WMI model and WMI takes care of these if there is no WMI provider for a given resource in the
standard WMI model. However, since extrinsic events are outside of the standard WMI model,
having a WMI provider is mandatory.

When creating a WMI query for extrinsic events, we need to use a class derived from
__ExtrinsicEvent class. Take a look at this CIM Studio screen capture.

As you see, there is registry provider that provides extrinsic events. The subsequent sections in
this chapter will use the extrinsic event classes from registry provider to show we can create
event notifications for extrinsic events.

Monitoring registry value change events
We use RegistryValueChangeEvent to monitor changes to registry values. Here is how we write
a WMI query for registry value change events:

$query = "SELECT * FROM RegistryValueChangeEvent WHERE
Hive='HKEY_LOCAL_MACHINE' AND KeyPath='Software\\Temp' AND ValueName='Name'"
Register-WMIEvent -Query $query -Action { Write-Host "Value changed" }

Yes, that is it. So, when the monitored value changes, we will see the message “value changed”
on the screen. However, there is one drawback here. The event notification only tells us that

[44]

the value has been modified but it won’t return the new value! Also, deleting a value is also
considered modification and we receive a notification. But, again, the notification won’t tell us
that the value was deleted. See the next screen capture.

Although we deleted the value, the resulting event notification does not tell us anything about
that value deletion. So, in the -Action script block, we will have to verify the presence of registry
value we are monitoring and then display the new value. For example,

$query = "SELECT * FROM RegistryValueChangeEvent WHERE
Hive='HKEY_LOCAL_MACHINE' AND KeyPath='Software\\Temp' AND ValueName='Name'"

Register-WMIEvent -Query $query -Action {
 If ((Get-item HKLM:\SOFTWARE\Temp).GetValue("Name")) {
 Write-host (Get-item HKLM:\SOFTWARE\Temp).GetValue("Name")
 } else {
 Write-host "The registry value was deleted"
 }
}

Monitoring registry key change events
RegistryKeyChangeEvent can be used to monitor modifications to a registry sub key. Similar to
RegistryValueChangeEvent, this event notification also won’t give you any information beyond
sub key modification. Here is how we use it:

$query = "SELECT * FROM RegistryKeyChangeEvent WHERE
Hive='HKEY_LOCAL_MACHINE' AND KeyPath='Software\\Temp'"

Register-WMIEvent -Query $query -Action {Write-host "Something changed"}

Once again, you need to use some technique similar to what is shown above to retrieve the
“real” modification that happened.

[45]

Monitoring registry tree change events
RegistryTreeChangeEvent can be used to monitor sub-tree level modifications. Similar to other
two event classes in the registry provider, this event class provides a notification that a change
occurred but won’t tell us about what had changed. So, we got to use a method of our own to
detect what change generated the event notification.

$query = "SELECT * FROM RegistryTreeChangeEvent WHERE
Hive='HKEY_LOCAL_MACHINE' AND RootPath=''"

Register-WMIEvent -Query $query -Action { Write-host "Something changed" }

There are many vendor provided extrinsic event classes.

For example, take a look at how Intel ME WMI provider uses extrinsic events for firmware state
notifications:
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/d
efault.htm?turl=WordDocuments%2Fwmievents.htm

This is it about extrinsic events in WMI. Go and explore these using the examples we used
throughout. We shall look at WMI timer events in the next chapter.

http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fwmievents.htm
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fwmievents.htm

[46]

Timer Events

WMI timer events are generated by WMI infrastructure at a point in time. In the good old days
of Windows 2000, we had to capture these by creating an instance of classes derived from the
__TimerInstruction class. Also, there are two types of timer events.

1. Absolute Timer Events occur on a specific day at a specific time.

2. Interval Timer Events are events that occur periodically at specified intervals. For

example, every 30 minutes.

Prior to Windows 2003, we would use __AbsoluteTimerInstruction class and
__IntervalTimerInstruction class to define these events. However, that isn’t necessary anymore
with the introduction of Win32_LocalTime and Win32_UTCTime WMI classes. With these two
classes, we can use the standard WMI eventing model to consume timer events.

Let us take a look at Win32_LocalTime11. This class represents an instance of
Win32_CurrentTime.

As shown in the above screenshot, an instance of this class represents the current date and
time. There are a few special properties that tell us which quarter of the year, week in the
current month, etc. Do refer to the MSDN link for this class and read about these properties.
Especially, DayOfWeek property. It always indicates Sunday as zero irrespective of the system
culture and language settings.

11

 Win32_LocalTime on MSDN: http://msdn.microsoft.com/en-us/library/aa394171(v=VS.85).aspx

http://msdn.microsoft.com/en-us/library/aa394171(v=VS.85).aspx

[47]

Since, this class supports standard WMI eventing model, we can use an intrinsic event query to
consume these events. For example,

#Setup WQL query
$query = "SELECT * FROM __InstanceModificationEvent WHERE TargetInstance ISA
'Win32_LocalTime'"

#Register WMI Event
Register-WMIEvent -Query $Query -SourceIdentifier "Event-Every-Second"
-Action {Write-Host "Event Received"}

The above code will result in displaying “Event Received” message in the console every second.
This is because the event fires every second and that is the smallest time segment supported.
Now, this won’t be very useful unless we want to flood the consumer with a bunch of useless
messages every second. Let us look at another example:

#Setup WQL query
$query = "SELECT * FROM __InstanceModificationEvent WHERE TargetInstance ISA
 'Win32_LocalTime' AND TargetInstance.Hour=14
 AND TargetInstance.Minute=30
 AND TargetInstance.Second=0"

#Register WMI Event
Register-WMIEvent -Query $Query -SourceIdentifier "Event-Every-Day-14.30PM"
-Action {Write-Host "Event Received"}

In this example, we use WQL query to register for a WMI event that fires every day at 14.30
hours. Note that the hour’s value is in 24 hour format. Now, this is useful. We can use the
-Action script block to do something better like running a backup script when this event fires.
Similarly, we can also create event registrations for events occurring on specific day of every
quarter (Quarter) or specific week (WeekInMonth) of every month.

However, here is the catch: there is a bug that causes DayOfWeek to stop triggering any timer
events.

#Setup WQL query for DayOfWeek
$query = "SELECT * FROM __InstanceModificationEvent WHERE TargetInstance ISA
 'Win32_LocalTime' AND TargetInstance.DayOfWeek=3
 AND TargetInstance.Hour=12
 AND TargetInstance.Minute=16
 AND TargetInstance.Second=0"

#Register WMI Event
Register-WMIEvent -Query $Query -SourceIdentifier "Event-Every-Tuesday-12-
16PM" -Action {Write-Host "Start backup"}

The above example will never trigger a timer event because of the bug I mentioned. This is a
known bug at this time which may be fixed in next release of the operating system. No
promises!

And, here is a workaround:
We just need to dupe WMI with a second DayOfWeek condition in the WHERE clause and this is
how we do it:

[48]

#Here is the workaround. We just dupe WMI by putting a dummy DayOfWeek
#Condition
#WMI seems to be firing the timer event properly when there are multiple
#DayOfWeek Conditions
$query = "SELECT * FROM __InstanceModificationEvent WHERE
 (TargetInstance ISA 'Win32_LocalTime') AND
 (TargetInstance.Quarter=4) AND
 (TargetInstance.WeekInMonth=1) AND

 (TargetInstance.DayOfWeek=5 OR TargetInstance.DayOfWeek=9) AND
 (TargetInstance.Hour=19) AND
 (TargetInstance.Minute=41) AND
 (TargetInstance.Second=0)"

Register-WMIEvent -Query $query -Action {Write-Host "Event Arrived"}

In the above timer event query, we used DayOfWeek multiple times in the WHERE clause. And,
if you observe closely, we used ‘9’ as one of the values for DayOfWeek property. This has no
impact on the outcome of the query since there is no 9th day of week. We just use this dummy
value to make the query work.

So, what are these timer events used for? I have not come across a real need for timer events
in system administration. However, one use is to be able to create complex scheduling tasks
that are not possible using the regular task scheduler. For example, check the above code itself.
Using that, we are subscribing to the timer event that occurs on every Thursday of every fourth
week of a month in the third quarter of every year. This type of scheduling isn’t possible with
the regular scheduler.

This brings us to end of discussion on the different types of WMI event queries. We have seen,
so far, how to use WMI query language for creating WMI event queries and subscribe to WMI
events.

[49]

WMI Schema Queries

Schema queries are used to retrieve class definitions (rather than class instances) and schema
associations. In simple words, if you need to find out what type of information (this is what
schema really means) a specific class holds, you use schema queries. Here is an example of a
schema query:

$query = "SELECT * FROM meta_class WHERE __this ISA 'Win32_Process'"

Get-WMIObject -Query $query | Format-List

And, this is what you would see when you execute the code:

In one of the earlier discussions, we looked at retrieving class definitions with ASSOCIATORS OF

and REFERENCES OF keywords. So, how are the schema queries different from the data queries

using these two keywords?

Well, the above keywords return class definitions only when there are instances of those

classes present. Using a schema query, we can retrieve the class definitions even when there is

no instance present.

To understand what I just said, take a look at this example that shows how a WMI query was

built when using REFERENCES OF.

$query = "REFERENCES OF {Win32_Process=$pid} WHERE ClassDefsOnly"
Get-WMIObject -Query $query | Format-List

See the {Win32_Process=$pid} part of the query. We have to specify some identifier so that we
can get an instance. In the above example, we used $PID automatic variable. $PID is the process
ID of the PowerShell host. If we don’t specify a PID or some other identifier to get the instance,
we end up with an error while executing the query. Now, go back and take a look at how we
wrote the schema query. We did not specify any kind of an identifier or property anywhere and
we were still able to get the class definition. That is the difference.

[50]

Let us dig a bit in to the schema query syntax.

We are familiar with the SELECT keyword. When building schema queries, only “*” is supported.
Unlike other queries, you cannot do something like SELECT xyz FROM abc. It has to be SELECT *
always. And, the use of meta_class specifies that we are building a schema query. The only way
to narrow down the results, when using schema queries, is to use a WHERE clause. Let us now
look at a few ways to narrow the query results.

Using __this
__this is a special property that identifies the target class for the query and using an ISA
operator is must. This requests the definitions for the subclasses of the target class. Here is how
you use this method:

$query = "SELECT * FROM meta_class WHERE __this ISA 'Win32_LogicalDisk'"
Get-WMIObject -Query $query | Format-List

This when executed, returns the class definitions of Win32_LogicalDisk and all its subclasses.

Using __Class
Using __Class, we can request for the class definitions of a single class and this is how we do it:

$query = "SELECT * FROM meta_class WHERE __class='Win32_LogicalDisk'"
Get-WMIObject -Query $query | Format-List

This is a brief overview of schema queries. We seldom need to use schema queries and IT Pros
will probably never have to use this type of queries. You can also use REFERENCES OF and
ASSOCIATORS OF keywords to get schema associations. You can use the SchemaOnly qualifier
in the WHERE clause to retrieve the schema associations of a class.

[51]

WMI Event Consumers

We have used the PowerShell cmdlet, Register-WMIEvent, to create these event subscribers. As
mentioned at the beginning of this discussion on event queries, Register-WMIEvent creates
only temporary event consumers. What are these event consumers? What are the different
types of event consumers?

In this chapter, we shall look at types of event consumers and how to create these event
consumers. This chapter has no direct relation to learning WMI query language. This is just a
bonus chapter that helps you understand WMI event consumer concepts.

Event consumers are applications that request notification of an event and then perform an
action in response to that specific event. The PowerShell cmdlet we used in our examples so far
creates an event consumer too. WMI just passes the relevant notifications from providers to
consumers. Event consumers use an event filter to register with WMI to receive the event
notifications and these consumers have no idea if the event providers support intrinsic events
or extrinsic events. WMI abstracts this information from consumers.

There are two types of event consumers in WMI.

1. Temporary event consumers

2. Permanent event consumers

Temporary Event consumers
A temporary event consumer can receive event notifications only while it is active. The
temporary event registrations are stored in memory and hence, will be lost when the hosting
application closes. For example, the Register-WMIEvent cmdlet creates a temporary event
consumer. However, once we close the PowerShell console, where we registered for the event
notifications, the event registration will be lost. We will no more receive any WMI event
notifications. We have seen several examples already using Register-WMIEvent cmdlet. Hence,
this requires no further explanation.

Permanent Event consumers
A permanent consumer12 is a COM object that can receive a WMI event at all times. A
permanent event consumer uses a set of persistent objects and filters to capture a WMI event.
Like a temporary event consumer, we set up a series of WMI objects and filters that capture a
WMI event. When an event occurs that matches a filter, WMI loads the permanent event
consumer and notifies it about the event. Because a permanent consumer is implemented in
the WMI repository and is an executable file that is registered in WMI, the permanent event
consumer operates and receives events after it is created and even after a reboot of the
operating system as long as WMI is running.

12

 Permanent Event Consumers: http://msdn.microsoft.com/en-us/library/aa393013(v=vs.85).aspx#event_consumers

http://msdn.microsoft.com/en-us/library/aa393013(v=vs.85).aspx#event_consumers

[52]

A permanent event consumer can receive event notifications whether it is active or inactive. If
an event takes place and a permanent consumer is not currently active, then WMI tries to load
the event consumer before forwarding the event. The permanent event consumers are useful
in scenarios where we don’t need to have consumer active all the time in memory.

A permanent event consumer receives events until its registration is explicitly canceled and
unlike temporary event consumers, the permanent consumers have to be unregistered
explicitly.

WMI comes preinstalled with a five standard consumer13 classes. They are:

Event Consumer type Description

ActiveScriptEventConsumer Executes a predefined script in an arbitrary
scripting language when an event is delivered
to it. This consumer is available on Windows
2000, XP and later versions.

LogFileEventConsumer Writes customized strings to a text log file
when events are delivered to it. This consumer
is available on Windows XP and later versions.

NTEventLogEventConsumer Logs a specific message to the Windows NT
event log when an event is delivered to it. This
consumer is available on Windows XP and
later versions.

SMTPEventConsumer Sends an e-mail message using SMTP each
time an event is delivered to it. This consumer
is available on Windows 2000, XP and later
versions.

CommandLineEventConsumer Launches an arbitrary process in the local
system context when an event is delivered to
it. This consumer is available on Windows XP
and later versions

Creating a WMI permanent event consumer includes creating an event filter, creating an
instance of one of the above consumer classes and binding the filter & consumer together. An
instance of the above physical consumer is called a logical consumer. Here is what MSDN
documentation14 says about logical event consumers:

The properties of a logical event consumer specify the actions to perform when notified
of an event, but do not define the event queries with which they are associated. When
signaled, WMI automatically loads the COM object that represents the permanent event

13

 Standard consumer classes: http://msdn.microsoft.com/en-us/library/aa393649(v=vs.85).aspx
14

 Logical Event consumers: http://msdn.microsoft.com/en-us/library/aa393014(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/aa393649(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa393014(v=vs.85).aspx

[53]

consumer into active memory. Typically, this occurs during startup or in response to a
triggering event. After being activated, the permanent event consumer acts as a normal
event consumer, but remains until specifically unloaded by the operating system.

Let us now see the steps in creating a permanent event consumer. For this example, we shall
use LogFileEventConsumer type.

Note
All the below steps require administrative privileges and hence should be run at an
elevated command prompt.

Creating an event filter
An event filter is a WMI class that describes which events WMI delivers to a physical consumer.
An event filter also describes the conditions under which WMI delivers the events. Creating an
event filter involves creation of an instance of __EventFilter WMI class. For example,

#Creating a new event filter
$instanceFilter =
([WMICLASS]"\\.\root\subscription:__EventFilter").CreateInstance()
$instanceFilter.QueryLanguage = "WQL"
$instanceFilter.Query = "SELECT * FROM Win32_ProcessStartTrace"
$instanceFilter.Name = "EventFilter1"
$result = $instanceFilter.Put()
$newFilter = $result.Path

The above example shows how to create an event filter. At the end of the example, we stored
the path to the newly created event filter in $newFilter.

Let us now look at how we can create an instance of LogFileEventConsumer.

Creating a logical consumer
Like any other WMI class, we must create an instance of the physical consumer. An instance of
a physical consumer class is also known as a logical consumer. The logical consumer represents
the physical consumer to WMI. The main purpose of a logical consumer is to provide the
physical consumer with the parameters for the activities the physical consumer performs. The
below code shows how to create a logical consumer:

#Creating a new event consumer
$instanceConsumer =
([wmiclass]"\\.\root\subscription:LogFileEventConsumer").CreateInstance()
$instanceConsumer.Name = "EventConsumer1"
$instanceConsumer.FileName = "C:\Scripts\processLog.log"
$instanceConsumer.Text = "New process has been
created: %TargetInstance.ProcessName%"
$result = $instanceConsumer.Put()
$newConsumer = $result.Path

[54]

Notice that these physical consumers exist in the root\subscription namespace. Also, notice the
$instanceConsumer.Text. The %TargetInstance.ProcessName% is the name of the process that
gets created. So, the value we provide to $instanceConsumer.text really depends on what we
want to write to the log file. We specified the name of the log file as processLog.Log under
C:\Scripts.

So, we have the path to the new LogFileEventConsumer in the $newConsumer variable. Let us
now go ahead and bind them together.

Binding Event Filter and Consumer
Binding the event filter and consumer are straightforward. This is how we do it:

#Bind filter and consumer
$instanceBinding =
([wmiclass]"\\.\root\subscription:__FilterToConsumerBinding").CreateInstance()
$instanceBinding.Filter = $newFilter
$instanceBinding.Consumer = $newConsumer
$result = $instanceBinding.Put()

This is it. Now, we have all the steps complete. Now, whenever a new process gets created we
should see an entry in the log file under C:\scripts location.

We now understand how to create a LogFileEventConsumer for permanent event notifications.
As shown earlier, there are four more permanent event consumers. Also, as you see in the
above examples, the creation of filters, consumers, and binding them together is quite verbose.
This can be quite complex too depending what logical consumer you want to create.

To make this process easy, Trevor Sullivan15 created a PowerShell module called PowerEvents16.
This module can be used to any of the five permanent standard event consumers.

Introducing PowerEvents
PowerEvents is a Windows PowerShell v2.0 module designed to facilitate the ease of creating,
updating, and deleting WMI (Windows Management Instrumentation) permanent event
registrations. PowerEvents makes it easy to create WMI event filters (define the events you
want to capture) and event consumers (responders to events), and then bind them together to
initiate the flow of events. By leveraging permanent event registrations, you can perform
advanced monitoring functions on a workstation or server that would otherwise require
implementation of an enterprise monitoring product. Because WMI is incredibly vast in the
information it provides, very detailed monitoring can be performed using almost any of the
WMI objects that exist on a computer.

15

 Trevor’s Blog: http://trevorsullivan.net
16

 PowerEvents: http://powerevents.codeplex.com

http://trevorsullivan.net/
http://powerevents.codeplex.com/

[55]

You can download the module and import the same using Import-Module cmdlet. This module
has the following cmdlets to support creation of permanent event consumers.

1. Get-WmiEventConsumer

2. Get-WmiEventFilter

3. New-WmiEventConsumer

4. New-WmiEventFilter

5. New-WmiFilterToConsumerBinding

Let us now see how we can use PowerEvents module to create permanent event consumers.
We shall create a scheduled task using WMI timer events and WMI command-line event
consumer.

Creating an event filter
PowerEvents module provides a cmdlet to create an event filter — New-WMIEventFilter.

$query = "SELECT * FROM __InstanceModificationEvent WHERE
 (TargetInstance ISA 'Win32_LocalTime') AND
 (TargetInstance.Quarter=3) AND
 (TargetInstance.WeekInMonth=4) AND
 (TargetInstance.DayOfWeek=4 OR TargetInstance.DayOfWeek=9) AND
 (TargetInstance.Hour=12) AND
 (TargetInstance.Minute=0) AND
 (TargetInstance.Second=0)"

$taskFilter = New-WmiEventFilter -Name "WQL for 3rd quarter timer event" -
Query $query

This is it. You have the event filter created.

Creating an event consumer
The cmdlet for creating an event consumer is New-WMIEventConsumer. Let us see how to
create a command-line event consumer. The idea is to invoke a backup script when the event
fires.

$cmdConsumer = New-WmiEventConsumer -Verbose -Name "bkConsumer1" -
ConsumerType CommandLine -CommandLineTemplate "cmd.exe /c
`"C:\Scripts\backup.bat`""

The -CommandLineTemplate takes the path to the backup script. Also, note that the
ConsumerType is set to CommandLine in this case.

Now that we have both filter and consumer, let us bind them together.

Binding Event filter and consumer
We need to bind the event filter and the consumer together so that the backup script gets
invoked when the timer event gets triggered on the specified date & time. To do this, we will
use New-WMIFilterConsumerBinding cmdlet.

[56]

New-WmiFilterToConsumerBinding -Filter $taskFilter -Consumer $cmdConsumer -
Verbose

This is it. The backup script gets triggered once the timer event gets fired. This is just one
example of creating complex scheduling tasks using WMI timer events. And, using PowerEvents
makes it easy to create permanent event consumers. Go and explore!

